

Consumers' WTP for Sustainable Seafood

Suzanne van Osch

Introduction

IMTA Economic Benefits

Economic benefits of IMTA are widely recognised

Supply:

- Nutrient cycling
- Added produce
- Product diversification

Demand:

 potentially higher profits due to consumers' WTP

Research aim:

to determine consumers' WTP for sustainable seafood.

IDREEM project

Increasing Industrial Resource Efficiency in European Mariculture

- protect the long-term sustainability of European aquaculture
 - ➤ demonstrating IMTA through pilot commercial-scale testing, field research and modelling.
- Study aim:
 - ➤ Estimating consumer's WTP for sustainably produced seafood
- Survey in 5 countries (Ireland, Italy, Israel, Norway, UK)
 500 respondents per country
 including a choice experiment

Choice Experiment Design

Data retrieved in 5 countries
Ireland, Italy, UK, Norway, Israel
500 respondents per country

- 8 choice cards per resp.
- 3 alternatives per choice card
 2 purchases, 1 opt-out

3 attributes per choice

- Production location nationally or internationally
- Sustainability
 Ecolabel Sustainability A D
- Price
 Low, medium or high price

Random Utility Choice Model

 The RUM approach models the choice from among a set of alternative options as a utility-maximizing decision.

$$U_{ni} = V_{ni} + \varepsilon_{ni}$$

• The probability that individual *n* chooses alternative *i* from the set of *J* alternatives is given by:

$$P_{ni} = \text{Prob}(V_{ni} + \varepsilon_{ni} > V_{nj} + \varepsilon_{nj} \forall j \neq i)$$

- An individual picks the option that yields the highest utility level on any given choice occasion.
- Conditional Logit

The Random Parameter Logit Model

 Generalizes the CL by allowing the coefficients of observed variables to vary randomly over people rather than being fixed.

$$U_{ni} = bX_{ni} + \eta_n X_{ni} + \varepsilon_{ni}$$

 Because the unobserved portion of utility is correlated over alternatives, RPL does not exhibit the independence from irrelevant alternatives property of a CL.

Consumer Attitudes for sustainable salmon production

IrelandAquaculture Benefits

Ireland

Aquaculture Impact

Consumer Attitudes for sustainable salmon production

Ireland
IMTA Potential Economic

Ireland

IMTA Potential - Environmental

disease

control

don't know

yes

■no

Model Results for Ireland

	Ireland	
choice	Random Coeff. (SE)	Standard
		Deviation (SE)
SusC	0.42 (.279)***	0.3 (.232)**
SusB	0.88 (.157)**	0.64 (.12)***
SusA	2.24 (.097)***	2.29(.091)***
Location	1.53 (.279)***	1.97 (.116)***

Log-Likelihood	-3198
LR Chi ²	1701
Observations	12000

Non-Random Parameters				
	Coeff. (SE)			
price	-0.24 (.009)***			
ASC	-3.94 (.275)***			
Male	-0.47 (.129)***			
Third Level Ed	-0.06 (.118)			
Age	0.03 (.005)***			
Marital Status	-0.28 (.124)**			
Income	-0.58 (.122)***			
Home maker	-0.16 (.169)			

WTP for sustainable salmon production

Marginal WTP for sustainable salmon production

Scenario	Production	Sus	CS -
	Location	Level	WTP
1	Ireland	Label A	€ 15.66
2	Ireland	Label B	€ 10.02
3	Ireland	Label C	€ 8.09
4	Elsewhere	Label A	€ 9.30
5	Elsewhere	Label B	€ 3.66
6	Elsewhere	Label C	€ 1.73

Scenario Analysis for Ireland

Conclusions

- Current aquaculture expansion in context of policies stressing blue growth and environmental protection
 - Analysis showed a positive preference for sustainability and national production
 - WTP could act as stimulus for sustainable production practices
 Necessary to ensure that profit margins go to fish farmers and do not end up in the hands of retailers.
- Product diversification is prerequisite for IMTA
 - An ecolabel as presented in this research might contribute to both product diversification and consumer demand

